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evolution of phase space densities of a dynamical system. The governing equations for the particle
or ray densities can often be written in terms of conservation laws [3], an example is the Liouville
equation describing the evolution of ray densities in phase space for Hamiltonian flows. This class
of problems is particularly interesting in the context of approximating linear wave equations in
terms of their underlying ray dynamics in the short wavelength limit.

Numerical approaches for solving transport problems of this kind are typically based on the
method of characteristics, that is, the solutions are found along trajectories or rays determined by
the underlying vector field. The flow equations can be formulated in terms of a linear propagator,
the so-called Frobenius–Perron (FP) operator [4], which describes the evolution of phase space
densities in time. The FP operator acting on a phase space density ρ may be expressed as an
integral operator of the form

Lτ ρ(X) =
∫
δ(X − ϕτ (Y))ρ(Y) dY. (1.1)

Here, the flow map ϕτ describes the propagation of trajectories over time τ . Efficient numerical
methods for solving flow problems in more than one-dimension for a wide class of physically
relevant systems are still non-existent. A variety of techniques have been developed based on
an FP-operator approach, however, all with a fairly limited range of applicability. Difficulties
arise due to the high-dimensionality of the phase space and the singular nature of the operator
describing the underlying deterministic dynamics. One approach for dealing with such problems
is Ulam’s method [5], which is based on subdividing the phase space into distinct cells and
considering transition rates between these phase space regions. Other methods include wavelet
and spectral methods for the infinitesimal FP-operator [6,7] and periodic orbit expansion
techniques [4,8]. The modelling of many-particle dynamics, such as protein folding, has been
approached using short trajectories of the full, high-dimensional molecular dynamics simulation
to construct reduced Markov models [9]. For a discussion of convergence properties of the Ulam
method in one- and several dimensions, see Bose & Murray [10] and Blank et al. [11], respectively.

More direct methods are based on tracking swarms of trajectories in phase, space often referred
to as ray tracing [12]. Methods related to ray tracing but tracking the time-dynamics of interfaces
in phase space, such as moment methods and level set methods, have been developed by Osher &
Fedkiw [13], Engquist & Runborg [14], Ying & Candès [15] and Boon et al. [16] among others. They
find applications in acoustics, seismology and computer imaging, albeit restricted to problems
with few reflections; for an excellent overview, see Runborg [17]. In the following, we focus on
ray-tracing approximations of linear wave problems, although the methodology developed here
can be used in a more general context.

Ray-tracing and tracking methods often become inefficient when considering stationary
(wave) problems in bounded domains, or in general for ray-tracing problems including multiple
scattering trajectories and chaotic dynamics. An example is the wave field in a finite cavity driven
by a continuous monochromatic excitation. Here, multiple reflections of the rays and complicated
folding patterns of the associated level-surfaces often lead to an exponential increase in the
number of branches that need to be considered. It is thus necessary to use approximation methods
for the associated ray-tracing solutions, often based on ergodicity and mixing assumptions of
the underlying ray dynamics. A popular tool among the mechanical engineering community
in the context of vibroacoustic modelling is statistical energy analysis (SEA) [18–20]. A related
method for electromagnetic fields is the random coupling model, which makes use of random
field assumptions [21]. In SEA, the structure is subdivided into a set of subsystems and ergodicity
of the underlying ray dynamics as well as quasi-equilibrium conditions are postulated. The result
is that the density in each subsystem is taken to be approximately constant leading to greatly
simplified equations based only on coupling constants between subsystems. The disadvantage
of these methods is that the underlying assumptions are often hard to verify a priori or are
only justified when an additional averaging over ‘equivalent’ subsystems is considered. The
shortcomings of SEA have been addressed by Langley [22], Langley & Bercin [23] and more
recently in a series of papers by Le Bot [24–26].
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Figure 1. (a) Discrete flow mapping on a mesh of a thin aluminium shell (shock tower) from a Range Rover. (b) The boundary
flowmapϕij between a pair of adjacent triangles. (Online version in colour.)

A computational method called dynamical energy analysis (DEA), which is based on an FP-
operator approach, has been introduced by Tanner [27] and further developed in Chappell et al.
[28]. DEA is a Ulam-type method subdividing configuration space into smaller subsystems,
but using a basis approximation (spectral method) to obtain an improved resolution of
the phase space density. By increasing the resolution in both the position and momentum
variable, one systematically interpolates between SEA and full ray tracing, thus relaxing the
underlying ergodicity and quasi-equilibrium assumptions in SEA. A more computationally
efficient approach using a boundary element method for the spatial approximation has been
applied to both two- and three-dimensional problems in Chappell and co-workers [29,30].
A major advantage of DEA is that by removing the SEA requirements of diffusive wave
fields (equivalent to the ergodicity assumption) and quasi-equilibrium conditions, the choice of
subsystem division is no longer critical. The resulting increase in flexibility in this choice leads to
a much more widely applicable method.

In this work, we exploit the freedom in choosing the subsystems by extending DEA towards
solving the Liouville equation (or other hyperbolic equations) on meshes. Meshed surfaces
are replete in numerical simulation problems, thanks largely to the huge popularity of finite-
element methods (FEMs). Considering the elements of a mesh as our basic domains therefore
automatically renders our techniques applicable to a wide class of problems including the ability
to handle complex geometries; an example of which is given in figure 1a. A highly efficient
solution procedure can be developed for triangulated surfaces since the problem is simplified
to considering the local ray dynamics in flat planar regions. In addition, solving phase space
flow equations on meshes makes it possible to consider geodesic dynamics on curved surfaces
or ray dynamics in non-homogeneous media. This opens up the range of possible applications
enormously, for example, in modelling high-frequency vibrations of thin elastic shells [31,32] or
in underwater acoustics [33].

The main outcome of this paper will be the introduction and development of the discrete
flow mapping (DFM) technique, a new and efficient method for solving stationary phase space
flow equations in complex domains. DFM has similarities to both finite-volume methods and
boundary integral methods, combining the advantages of each. One achieves the reduction in
dimensionality to the boundary of each subdomain characteristic of boundary integral methods,
which in phase space is a reduction by two. In addition, one can treat non-homogeneous
domains as in finite-element and finite-volume methods by applying an approximation of local
homogeneity and refining the mesh to improve this approximation. A great advantage of DFM
is that it can be applied directly to existing finite-element models with relatively coarse meshes,
and provides a solution for the high-frequency case that automatically contains the geometrical
details absent from SEA-type methods. In addition, the flow directivity can be resolved, unlike in
an SEA model where ergodicity is assumed.
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The paper is structured as follows: we will give an integral equation formulation for the
stationary Liouville equation on triangulated surfaces in §2. We then detail the implementation
of DFM in §3; using the linearity of the integral operator, we approximate the solution
using a mixture of boundary element and spectral methods. We also discuss the treatment of
reflection and transmission on interfaces, such as at edges or due to abrupt changes in material
parameters. Finally, in §4, DFM is applied to model the phase space flow on a sphere and the
geodesic flow on an irregularly shaped car body part, demonstrating its power and efficiency
in practice.

2. Integral equation formulation
We will focus on triangulated surfaces Ω = ⋃NΩ

j=1Ωj ⊂ R
3 consisting of NΩ triangles Ωj, j =

1, . . . , NΩ such as depicted in figure 1a. We consider piecewise constant Hamiltonians of the form
Hj(r, p) = cj|p| = 1 in Ωj describing the energy of a flow, where cj is the flow velocity for r ∈Ωj,
and the momentum coordinate p lies on a circle of radius c−1

j . This Hamiltonian is associated to
the Helmholtz equation with inhomogeneous wave velocity c(r) [17]. In §3b, we also consider
vectorial wave equations, such as plate equations, which include different wave modes. In
this case, the wave propagation needs to be characterized by more than one Hamiltonian per
triangle j, that is, we need to consider Hamiltonians Hl

j = cl
j|p|, where l refers to the mode type.

We restrict our discussion to the scalar case in the following for simplicity of notation.
Let us denote the phase space on the boundary of the triangle Ωj as Qj = ∂Ωj × (−c−1

j , c−1
j ).

The associated coordinates are Xj = (sj, pj) ∈ Qj with sj parametrizing ∂Ωj, the boundary of the
jth triangle, and pj ∈ (−c−1

j , c−1
j ) parametrizing the component of the inward momentum (or

slowness) vector tangential to ∂Ωj. We denote the boundary flow map as ϕij : Qj → Qi which takes
a vector in Qj and maps it under the flow given through Hj to a vector in Qi (figure 1b). Note that
ϕij is generally only defined on a subset of Qj, namely the preimage of Qi, that is ϕ−1

ij (Qi) ⊆ Qj.
This preimage is empty if Ωj and Ωi are not adjacent (figure 1).

The stationary density ρ(Xi) on Qi, i = 1, . . . , NΩ , due to an initial boundary distribution ρ(0)

on Qj, j = 1, . . . , NΩ , may be computed using the following boundary integral equation [27,29,30],

(I − B)ρ(Xi) = ρ(0)(Xi), (2.1)

where

Bρ(Xi) :=
∑

j

∫ c−1
j

−c−1
j

∫
∂Ωj

KΓ (Xi, Xj)ρ(Xj) dsj dpj, (2.2)

and KΓ describes the propagation of the flow. Here, we consider purely deterministic flows with

KΓ (Xi, Xj) = w(Xi) δ(Xi − ϕij(Xj)).

Note that the transfer operator B is a modified version of the FP operator (1.1) defined over a
triangulated surface. The time-dependent flow map ϕτ has been replaced with the boundary flow
map ϕij. In addition, a weight function w has been included to describe reflection/transmission
probabilities at boundaries and to incorporate dissipation. In this work, we consider a dissipative
factor of the form exp(−μL), where L is the length of the flow trajectory and μ is a damping
coefficient. A diffusion component may be added by replacing the δ-distribution in KΓ with a
finite-width kernel.

For the case w = 1, the transfer operator B is of FP type (1.1) with a maximum eigenvalue
of 1. Here the problem (equation (2.1)) becomes ill-posed, and thus we consider the case μ> 0
henceforth. One can also obtain a well-posed problem using other forms of dissipation, such
as an absorbing or open boundary region [29]. Note that because the flow map only maps to
neighbouring triangles, a matrix representation of B over the whole of

⋃NΩ

i=1 Qi is, in general,

http://rspa.royalsocietypublishing.org/
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sparse. Equation (2.1) is a boundary integral formulation for the stationary Liouville equation as
detailed in Chappell & Tanner [30]. The derivation of ρ(0) for a high-frequency point source is also
given in Chappell & Tanner [30].

3. Implementation of discrete flowmapping

(a) Discretization
Typically, it is assumed that Ω consists of a large number of triangles NΩ describing a
geometrically complex domain. A discrete approximation of ρ is sought in phase space
coordinates on the triangle boundaries. The spatial approximation is given by taking polynomial
basis functions on each triangle edge α with α = 1, 2, 3. That is, we split the approximation
at corners, see Chappell et al. [28] for further discussion on the benefits of this choice. In the
following, we use piecewise constant functions on the triangle edges for the sake of simplicity.
In contrast to the position coordinate, the momentum coordinate has support on the interval
(−c−1

j , c−1
j ) only. It is therefore proposed to use a Legendre polynomial basis approximation in

this coordinate [29]. A key advantage of these choices is that the integrand in the operator (2.2)
remains a very simple function of the position argument and the corresponding integral can be
performed analytically. This dramatically reduces the costs of evaluating (2.2) compared with the
implementation used in Chappell et al. [29].

The overall approximation on Qi for i = 1, . . . , NΩ is then of the form

ρ(Xi) ≈
3∑
α=1

Np∑
β=0

ρ(i,α,β)bα(si)P̃β (pi), (3.1)

where Np is the order of the momentum basis expansion. The momentum basis functions are
given by

P̃β (pi) = √
ciPβ (cipi), (3.2)

where Pβ is the Legendre polynomial of order β. The piecewise constant spatial basis functions are
given by bα(si) = 2−1/2/

√
Aα for si on the edge α, and zero elsewhere. Here, Aα is the length of the

edge α ∈ {1, 2, 3} ofΩi. Imposing a weak form of the integral equation (2.1) using the orthonormal
inner product for Legendre polynomials 〈·, ·〉 yields

(I − B)ρ = ρ0, (3.3)

where I is the identity matrix,

ρ0
(i,α,β) = 〈ρ(0)(si, pi), bα(si)P̃β (pi)〉,

B(i,α,β),(j,l,m) = 〈B(bl(si)P̃m(pi)), bα(si)P̃β (pi)〉,

⎫⎬
⎭ (3.4)

and the vectors ρ, ρ0 have entries given by ρ(i,α,β), ρ0
(i,α,β), respectively. Expanding the inner

product in (3.4) and using the definition of the transfer operator B (2.2), the discretized transfer
operator B acting on Qi for all i = 1, . . . , NΩ may be expressed as

B(i,α,β),(j,l,m) = 2m + 1
4

∫
Qi

∫
Qj

P̃β (pi)bα(si)KΓ (Xi, Xj)P̃m(pj)bl(sj) dsj dpj dsi dpi

= 2m + 1
4

∫
Qj

w(ψij(Xj))P̃β (ϕp
ij(Xj))bα(ϕs

ij(Xj))P̃m(pj)bl(sj) dsj dpj. (3.5)

Here, we write ϕij = (ϕs
ij,ϕ

p
ij) to denote the splitting of the position and momentum parts of the

boundary map. Using the properties of the weight function and the spatial basis functions,

http://rspa.royalsocietypublishing.org/
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Figure 2. Admissible ranges (smin, smax) for sj when a ray travels from edge l of triangle j with fixed direction coordinate pj =
sin(θ )/cj to an opposite edgeα: (a) sj can take all values in (0, L) on the edge l (i.e. smin = 0, smax = L); (b) sj ∈ (0, smax) and
(c) sj ∈ (smin, L). (Online version in colour.)

equation (3.5) simplifies to

B(i,α,β),(j,l,m) = 2m + 1
8
√

AαAl

∫ c−1
j

−c−1
j

P̃m(pj)
∫ smax(pj,α,l)

smin(pj,α,l)
wrt(ϕ

p
ij(Xj))e

−μLij(sj,ϕs
ij(Xj))P̃β (ϕp

ij(Xj)) dsj dpj. (3.6)

Here, wrt is equal to the transmission probability wt when i 
= j, and is equal to the reflection
probability wr = 1 − wt otherwise. Higher-dimensional transmission/reflection matrices arise in
the case of multi-mode dynamics as discussed in the next section. Also, Lij is the length of the
trajectory from the point represented by sj to ϕs

ij(Xj), and (smin, smax) is the admissible range
of values for sj. Restriction to this range is necessary to ensure that a ray starting on edge l
of triangle j with direction coordinate pj will be transferred to a particular adjacent edge α of
triangle i as shown in figure 2. Note that for flat polygonal elements such as triangles, ϕp

ij(Xj) in
fact only depends on pj, and hence only the damping term in equation (3.6) retains dependence
on sj. The inner integral thus has a simple form and can be computed analytically, leaving only
a single integral to be evaluated numerically. It is this step that leads to vast improvement in
the computing times, and enables us to consider many thousands of elements with high-order
approximations in direction space. Two key points are:

— Triangulation is used to ensure that the elements of a piecewise linear mesh are flat. This
enables us to deal with complex enclosures/surfaces while keeping the system locally
simple.

— Owing to the semi-analytic phase space integration, working with many thousands of
subsystems and high-order direction space approximations becomes tractable.

It is worth pointing out that the analytic integration method is not restricted to triangular
elements, but works for any flat polygons. The general idea of the DFM is related to the work in
Chappell et al. [28] and Chappell & Tanner [30]. However, in these papers, the DEA method was
developed for general subsystems of arbitrary shape and the double integrals in the equations
equivalent to equation (3.6) needed to be computed entirely numerically. Computing the matrix

http://rspa.royalsocietypublishing.org/
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Figure 3. T-joint as an example of a junction between three plates. The dashed line indicates an incoming wave, the solid lines
represent outgoing bending, shear and pressure waves. (Online version in colour.)

B is then time consuming, and the computations were restricted to a small number of subsystems
(typically 10 or less).

(b) Transmission at interfaces and ray tracing on curved surfaces
For modelling high-frequency wave propagation, it will be necessary to take into account
transmission (and consequently reflection) at interfaces with abruptly changing material
parameters or owing to edges and branch lines. The latter will arise, for example, when plates
are connected along a common junction such as depicted in figure 3. These effects are included
in our approach through transmission/reflection probabilities at triangle boundaries coinciding
with the interface. The reflection/transmission coefficients are obtained from local wave solutions
at the interface, incorporating the dependence on the direction of the incoming and scattered
waves. A number of scenarios important in the context of both wave propagation and ray tracing
are outlined below.

Scalar wave equations. For scalar wave equations and simple planar interfaces, the transmission
coefficients are derived from the wave equation using continuity of the wave function and its
normal derivative for an incident plane wave [34]. One thus obtains

wt(ki, kj, θj) = 4(ki/kj) cos(θj) cos(θi)

((ki/kj) cos(θj) + cos(θi))2 . (3.7)

Here, kj and ki are the wave numbers in the elements containing the incoming and outgoing
rays, respectively, with ki =ω/ci and ω is the angular frequency. A change of wave vector at the
interface may be due to a change in the material parameters for example. The angle of incidence
θj of the incoming ray with respect to the normal at the element boundary is simply arcsin(cjpj).
The direction of the outgoing ray θi is determined using Snell’s Law.

http://rspa.royalsocietypublishing.org/
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Elastic waves in coupled plates. A more general case is represented by interfaces forming
junctions between plates of varying thickness and meeting at arbitrary angles. The
transmission/reflection coefficients for a set of plates coupled at a common interface (such as
depicted in figure 3) may be computed using the methods presented in Langley & Heron [35]
and Craik et al. [36]. In particular, we consider the connection between plates as line junctions,
that is, the interior properties of the junction are not modelled and, the mass and moment of
inertia are neglected. Let us consider a line junction that couples n different (for simplicity) semi-
infinite plates. The boundary conditions at the line junction correspond to dynamic conditions
involving stresses, moments and kinematic conditions for the displacement and rotation of the
n plates. To construct the transmission coefficients, we calculate the response of the system with
respect to excitation by an incoming plane wave. The incoming wave has a fixed wavenumber
and a characteristic mode, that is, it is of bending (b), pressure (p) or shear (s) type. The outgoing
waves typically have components in all n plates and are a mixture of all mode types. Evanescent
modes may be included to complete the description. Possible material differences between the
plates can lead to different wavenumbers in different plates. For a given forcing with a particular
incoming mode in a particular plate, we can solve for the unknown modal coefficients in all plates.
In practice, we find the transmission probabilities directly by calculating the ratio of outgoing to
incoming normal power fluxes. A detailed description can be found in Chappell et al. [37].

Curved surfaces. In the case of a geodesic flow on a smooth curved surface, it is necessary to
mimic the geodesic paths on the corresponding triangulated surface. We use the theory outlined
in Kimmel & Sethian [38] and Martinez et al. [39], making use of the fact that for ray paths not
intersecting vertices on triangulated surfaces, the notions of shortest and straightest (discrete)
geodesic are equivalent [39]. Hence, the straightest geodesic choice of θj = θi will approximate the
direction of the geodesic flow on homogeneous regions of the triangulated surface, and abrupt
changes of surface thickness or material will result in a Snell Law effect [38]. A suitable choice of
quadrature method here ensures that the rays never pass through vertices of the triangulation
(although a point source may lie on a vertex), for example Gaussian quadrature rules where
endpoints are never used as abscissae.

Curved shells-curvature corrections. For modelling the vibration of thin shells, we need to
consider ray tracing on curved surfaces, where the dynamics are derived from thin shell theory
[31]. In a lowest order approximation, curved rays again follow the geodesics of the surface
[32,40]. This approximation derives from applying thin shell theory in the high-frequency limit
as in Norris & Rebinsky [41] and Norris [31], which is valid for wavelengths shorter than the
radii of curvature of the shell, but larger than the thickness. Corrections to the geodesic ray
approximations need to be considered if the local radii of curvature are of the same order as
the wavelength. It is possible to construct modified ray paths from the dispersion curves given by
thin shell theory [41], but this requires a detailed knowledge of the local curvature. In the interests
of keeping the model as simple as possible, we will follow a different approach here. We treat the
meshed structure as a set of plate-like elements and estimate reflection/transmission properties
owing to the finite angle between mesh elements using the plate-junction theory sketched earlier
and detailed in Langley & Heron [35] and Craik et al. [36]. This enables us to mimic wave barriers
due to regions of high curvature as demonstrated in §4.

In each of the cases considered earlier, reflection/transmission coefficients are incorporated as
part of the weight function w in the boundary integral kernel KΓ in equation (2.2), or its finite
dimensional approximation. We assume that the transmission coefficients depend only on the
incoming momentum ps via the angle of incidence; the outgoing angle is given by Snell’s law
taking into account refraction owing to differences in the wave speed across the interface.

4. Numerical examples
We will demonstrate the efficiency and flexibility of DFM with the help of two examples. First,
we determine the ray density produced by a point source on a sphere, where an analytic
solution is available for verification. Second, we compute the energy density distribution on the
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Np = 0(a)

(b)

Np = 6 Np = 12 exact

Np = 0 Np = 6 Np = 12 exact

Figure 4. Ray density (logarithmic scale) on a sphere computed using DFM showing the source point (a) and antipode (b) for
different orders of direction space basis (Np) on a triangulated spherewith 5120 triangles. The plots on the right-hand side show
a representation of the exact ray density over the same triangulation. (Online version in colour.)

curved surface of a cast aluminium Range Rover body part and compare with solutions of the
corresponding wave equation obtained using the FEM.

(a) Flow on a sphere
The ray density ρ generated by a geodesic flow emanating continuously from a point source on a
sphere can be determined analytically. As a function of the polar angle φ, with source point φ = 0,
the ray density is given by:

ρ(φ) = Ce−μφ

(1 − e−2πμ) sin(φ)
. (4.1)

Here, μ is the damping coefficient introduced in §2 and C is a constant depending of the strength
of the source. The derivation of equation (4.1) follows simply from the fact that the ray density on
the sphere is inversely proportional to the element of surface area. The exponential terms result
from damping contributions of the form exp(−μL); summing over the trajectory lengths L at any
point on the sphere results in a geometric series with a contribution each time the ray orbits
the sphere.

The sphere is thus a good candidate for verifying our approach on an approximately spherical
triangulated surface. The dynamics on the sphere are integrable and the exact solution for
the density contains a singularity at both poles (φ = 0 and π ) as the rays are unidirectional
along great circles passing through the source point. This example is therefore slightly atypical
because ergodic or mixing ray dynamics in complex geometries generally lead to more smoothly
distributed ray densities. The sphere is thus a true challenge for DFM, which due to the finite-
order basis approximation will always incorporate diffusive behaviour and consequently a
smoothing of singularities.

Figure 4 demonstrates that DFM can deal even with such a singular case. Higher-order
implementations of the basis approximation in direction space lead to an improved resolution
of the refocussed singularity. Table 1 gives the mean relative error averaged over the upper
hemisphere containing the source point shown in figure 4a. The results are given for Delaunay
triangulations with differing numbers of triangles and for different orders of direction space basis.
The results are computed at the centroid of each triangle and compared against the exact solution
for the same value of φ. For the results presented here, we have taken μ= 1 and C = (800π2)−1,
which is the scaling for a unit excitation of the Helmholtz equation with k = 100π . The factor is

http://rspa.royalsocietypublishing.org/
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Table 1. Mean relative errors computed at triangle centroids and averaged over the upper hemisphere of a Delaunay
triangulated sphere with NΩ triangles and a direction space Legendre polynomial basis approximation of order Np.

NΩ Np mean relative error

320 4 0.1606
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

320 6 0.1129
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

320 8 0.1142
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1280 8 0.08704
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1280 10 0.08884
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5120 10 0.06648
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5120 12 0.06212
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5120 14 0.06100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 480 14 0.05116
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 480 16 0.05012
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

derived from the high-frequency asymptotics of the two-dimensional fundamental solution for
the Helmholtz equation [30] and matching the asymptotics with equation (4.1) as the distance
from the source becomes small.

(b) An application in vibroacoustics
In this section, we consider the transport of high-frequency flexural or bending wave energy
through curved structures using thin shell and high-frequency ray models. At present, there
is wide interest in modelling aluminium shells in the automotive industry owing to a
desire for lighter and hence lower emission vehicles. In particular, large moulded aluminium
components are replacing more traditional multi-component beam-plate constructions, which
has the additional advantage of eliminating problems due to fatigue at joints. High-frequency
vibroacoustic models based on an SEA treatment will be unsuitable in these circumstances,
because complex geometrical features are not included in SEA. In addition, a subdivision of the
model into subsystems is not clear cut for such castings as all components are well connected,
see, for example, the structure in figure 1a representing an aluminium shock tower from a
Range Rover.

DFM can overcome these problems, since it can be easily applied in the framework of existing
grids for finite-element models, requires no choice of subsystem division and incorporates the
full geometry and directionality of the energy flow. The response of a thin moulded aluminium
car component (range rover shock tower) to a point force applied normally to the surface is
modelled and compared with an FEM approximation for the full wave model performed using
Nastran. Figure 1a shows the problem set-up, including the mesh and indicating the local DFM
map ϕij. In order to maintain a tractable model size for the finite-element calculation and to study
frequency ranges of industrial interest, the computation is performed at frequencies between 8
and 10 kHz. This approximately corresponds to a one-third-octave band centred at 9 kHz. A key
assumption of the thin shell theory is that the radius of curvature is large compared with the
wavelength [41], which is only partly satisfied for this structure in the frequency band considered.
The wavelength is typically around 3–6 cm depending on the shell thickness. We therefore use a
modified geodesic-ray-tracing technique by incorporating reflection/transmission owing to finite
angles between mesh elements as described in §3b. This leads to geodesic trajectories without
reflections in relatively flat areas, but incorporates wave barrier behaviour in regions of high
curvature.
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Figure 5. Kinetic energy density on a thin aluminium shell estimated using an averaged full wave (a) finite-element model
and (b) discrete flowmapping for 3% hysteretic damping. (Online version in colour.)

Figure 5 shows the DFM result (bending mode only) compared with the Nastran solution for
the kinetic energy averaged over 41 evenly spaced frequencies spanning the prescribed range
and with a hysteretic damping level of 3 per cent, which is typical for such a structure. The
point source is positioned at the front of the structure. The ray computation is performed using
a triangulated surface consisting of 11 623 triangles and with a sixth-order Legendre polynomial
basis in direction space. The Nastran grid contains 40 670 elements comprising a mix of piecewise
linear triangles and quadrilaterals. As would be expected, one sees more oscillation in the full
wave model. The DFM prediction of the overall energy flow in regions of both high and low
curvature matches well with the Nastran results. The flow of energy along the side walls of the
central mount, as well as features such as shadow regions owing to holes in the structure and
channelling effects owing to variations in the shell thickness can be observed as common in both
plots. Such geometrically dependent features would be entirely absent from SEA-type models
and represent a major advance for high-frequency vibroacoustic simulation methods.

Figure 6 gives the kinetic energy averaged over four different receiver regions, which are
displayed as the blue regions on the inset structure plots. The response is now shown for a range
of damping levels between 1 and 6 per cent, and for receiver regions with differing levels of
proximity to the source point. The correspondence between the mean of the 41 Nastran solutions
and DFM is remarkably good in figure 6a–c. The regions are spread across the whole structure
and provide strong verification of our approach. In figure 6d, the DFM results deviate slightly
for high damping. Note that this region is close to the region in figure 6c and the deviations thus
reflect local variations in the FEM solution. The results clearly demonstrate that curvature related
wave-barrier effects are correctly predicted by DFM using local reflection/transmission matrices.

The computations in this section were performed in parallel on four cores of a desktop PC in
less than 6 min. The code was written in C++ with openMP. The large sparse non-symmetric
linear system of dimension 732 249 that arises has been solved efficiently and accurately using a
stabilized biconjugate gradient iterative solver.

5. Conclusions
We present DFM as a highly efficient method for solving stationary phase space flow equations in
complex domains and apply the method to two illustrative examples. In particular, we highlight
the versatility of the method, its capability to handle large-scale models efficiently and emphasize

http://rspa.royalsocietypublishing.org/


12

rspa.royalsocietypublishing.org
ProcRSocA469:20130153

..................................................

 on May 15, 2013rspa.royalsocietypublishing.orgDownloaded from 
10–2

(a) (b)

(c) (d )

K
E

K
E

10–2

10–3

10–1

10–1

1 2 3 4 5 6
damping rate in %

1 2 3 4 5 6
damping rate in %

Figure 6. Kinetic energy (KE) response against hysteretic damping level. The KE is averaged over the circular receiver regions.
DFM, solid line with ‘o’ markers; FEM, dotted lines with ‘·’ markers; mean FEM, solid line with ‘x’ markers. (Online version
in colour.)

the fact that both geometrical details and flow directivity are fully included in the calculation at a
moderate computational cost. In the special case of ray focusing, the method clearly captures
the foci, albeit not reproducing the actual singularity. In the vibroacoustic example, the full
complexity of the model is taken into account via the mesh functionality of DFM. Deviations
from a pure geodesic flow owing to regions of high curvature have been reproduced without
compromising the efficiency of the method. DFM can thus serve as a practical tool for solving
phase space transport problems with applications in engineering ranging from acoustics to
structural mechanics. Extensions of the method to electrical engineering, as well as to fluid
mechanics and other flow problems are evident.
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