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Energy distributions of linear wave fields are, in the high frequency limit, often approxi-
mated in terms of flow or transport equations in phase space. Common techniques for solv-
ing the flow equations in both time dependent and stationary problems are ray tracing and
level set methods. In the context of predicting the vibro-acoustic response of complex engi-
neering structures, related methods such as Statistical Energy Analysis or variants thereof
have found widespread applications. We present a new method for solving the transport
equations for complex multi-component structures based on a boundary element formula-
tion of the stationary Liouville equation. The method is an improved version of the Dynam-
ical Energy Analysis technique introduced recently by the authors. It interpolates between
standard statistical energy analysis and full ray tracing, containing both of these methods
as limiting cases. We demonstrate that the method can be used to efficiently deal with
complex large scale problems giving good approximations of the energy distribution when
compared to exact solutions of the underlying wave equation.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Many phenomena in physics and engineering can be accurately described or modelled in terms of linear wave equations.
A large range of numerical methods has been developed for solving wave problems, often making heavy use of the linearity
of the underlying PDEs leading in general to large, finite matrix equations. Popular tools include finite element or finite vol-
ume methods, boundary element methods and various spectral methods. There are, however, basic limitations when approx-
imating the solutions of the wave equations directly: the size of the associated linear system increases with decreasing
wavelength and numerical schemes become inefficient when the local wavelengths are orders of magnitude smaller than
typical dimensions of the physical system.

In order to overcome this limitation, a range of high-frequency/ short wavelength methods have been devised such as the
WKB or Eikonal approach, Gaussian beam approximations or semiclassical methods developed in the context of quantum
chaos, see [1–3] for overviews. In particular, phase information is obtained by solving the Hamilton–Jacobi equations for
the action fields, whereas amplitude information is calculated using transport equations. The actual methods can be quite
intricate demanding an intimate knowledge of the classical phase space dynamics given by the Hamilton equations of mo-
tion for the underlying ray or classical dynamics. If one is prepared to omit phase information altogether, the approximations
amount to solving the transport or Liouville equation for phase space densities.

In this paper we will focus on efficient numerical methods to solve the Liouville equation (LE) for stationary problems. In
this framework we neglect the phase information and interference present in the solution of the full wave equations. We will
show how the solutions of the LE are related to both ray tracing (see, e.g. [4–6]) and Statistical Energy Analysis (SEA) [7–9], a
popular method in the engineering community for solving vibro-acoustic problems in the high-frequency limit.
. All rights reserved.
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The Liouville equation is an example of a PDE describing a conservation law [10]. Typical solution methods are based on
characteristics or ray tracing. Ray tracing is the method of choice when considering propagation over relatively short times
or intervals. Prime examples include weather forecasting, where data updates lead to regular re-initialisations of the density
distributions [11], or room acoustics, where only very few reflections need to be considered [5]. More sophisticated methods
related to tracking the time-dynamics of interfaces in phase space such as moment methods and level set methods [12–14]
have been developed only relatively recently, finding applications in acoustics, seismology and computer imaging. For an
excellent recent overview, see Runborg [2]. Numerical methods for solving the time dependent Liouville equation directly
on a mesh using finite volume or transfer operator methods, also referred to as Ulam methods, have been considered in
[15] and more recently in [16,17]. Ray based and tracking methods often become inefficient when considering frequency
domain wave problems in bounded domains, for example, determining the wave field in a finite size cavity driven by a con-
tinuous, monochromatic excitation. Here, multiple reflections of the rays and complicated folding patterns of the associated
level-surfaces often lead to an exponential increase in the number of branches that need to be considered.

In the engineering literature, these problems have been circumvented by subdividing the structure into a set of substruc-
tures and assuming ergodicity of the underlying ray dynamics and quasi-equilibrium conditions in each of the subsystems,
that is, assuming that the density in each subsystem is approximately constant. Under these assumptions greatly simplified
SEA equations based only on coupling constants between subsystems can be set up. The disadvantage of SEA is that the
underlying assumptions are often hard to verify a priori or are only justified when an additional averaging over ‘equivalent’
subsystems is considered. These shortcomings have been addressed by Langley [18,19] and more recently in a series of pa-
pers by Le Bot [20–22]. A computational tool based on a transfer operator approach systematically interpolating between
SEA and full ray tracing has been introduced first in [23] and further analysed in [24]. Its name, Dynamical Energy Analysis
(DEA), points at the similarities with SEA but stresses at the same time the importance of dynamical correlations present
in the ray-densities. Thus in DEA, the solution in a subsystem of the structure is typically represented by a vector; this is
in contrast to SEA where the solution in each subsystem is represented by a single number, the mean ray density in each
subsystem.

The implementation of DEA as presented in [23,24] corresponds to a spectral boundary integral method; the integral
equations are expanded in orthogonal basis sets and the resulting matrix equations are solved for the coefficients of the basis
expansion of the solution. It has been shown in [24] that the method works even in situations where a naive application of
SEA fails. However, spectral methods can lead to slow convergence for the matrix elements in the DEA matrix, in particular if
the boundary is non-smooth. In this paper we show that using a boundary element method (BEM) for the spatial variable and
a basis function expansion in the momentum component leads to large efficiency gains. Furthermore, we present for the first
time a detailed account of the boundary integral formulation employed.

The paper is structured as follows: in Section 2, we sketch the derivation of the Liouville transport equation from an
underlying wave equation; we will then derive the boundary integral formulation of the LE in Section 3 and give a descrip-
tion of the numerical implementation of DEA using basis expansions together with a BEM in Section 4. Numerical results will
then be presented in Section 5.

2. From wave dynamics to phase space densities

Solving transport equations such as the LE in the context of DEA can be viewed independently of the connection to wave
dynamics. The applications we have in mind in an engineering context are, however, related to high frequency wave prob-
lems. We therefore give here a brief introduction specifying how wave equations are related to transport equations, both for
time-evolution and stationary problems.

2.1. A time dependent formulation

We sketch first the connection between linear wave equations and the LE via the Eikonal ansatz in the time domain. We
will restrict the discussion to the Helmholtz equation of acoustics; other wave problems such as electromagnetic waves, lin-
ear elasticity or Schrödinger’s equation can be treated along the same line with the obvious modifications. For a more in
depth discussion of the Eikonal approach, see for example [2]. A nice derivation of the connection between wave transport
equations and the LE based on Wigner transformation techniques has been given in [25].

We start from the wave equation for linear acoustics, that is,
@2

@t2 �r � ðc
2rÞ

 !
uðr; tÞ ¼ 0; ð1Þ
seeking solutions uðr; tÞ in some domain X with boundary C; here, u may express acoustic pressure in appropriate units. Fur-
thermore, c ¼ cðrÞP 0 is the local wave speed. We assume in what follows that the wave equation is not explicitly time
dependent, that is, neither c nor the boundary conditions vary as a function of time. Also, the boundaries act as passive ele-
ments, that is, we have Dirichlet or Neumann boundary conditions, uðsÞ ¼ 0 or @u=@nðsÞ ¼ 0 for s 2 C. Solutions are then
determined uniquely in terms of initial conditions uðr;0Þ ¼ u0ðrÞ and @tuðr;0Þ ¼ u1ðrÞ at t ¼ 0.

We now make the usual Eikonal ansatz
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u ¼ Aeix/ ð2Þ
with real valued functions A ¼ Aðr; tÞ; / ¼ /ðr; tÞ and x acting as the large parameter here. Plugging (2) into (1) and collect-
ing terms of the order x2, we arrive at the Eikonal equation
@/
@t
� c r/j j ¼ 0: ð3Þ
Terms of order x yield a transport equation
2
@A
@t

@/
@t
þ A

@2/

@t2 � 2c2rA � r/� c2AD/� 2cr � ðcAr/Þ ¼ 0: ð4Þ
Setting
~qðr; tÞ ¼ A2ðr; tÞ @/
@t
ðr; tÞ;
we can write Eq. (4) in the form of a conservation law, that is,
@~q
@t
þr � v ~qð Þ ¼ 0 ð5Þ
with ‘‘velocity field’’
vðr; tÞ ¼ �c2r/
. @/
@t
; ð6Þ
determined through the phase function /ðr; tÞ alone.
Solutions of the Eikonal equation (3) can readily be found using characteristics. Without restricting the discussion we

choose the ‘‘+’’ sign in (3); see also comments further down in the text. Setting
Hðr;pÞ ¼ cjpj with momentum p ¼ r/; ð7Þ
one obtains solutions /ðr; tÞ along trajectories in phase space XðtÞ ¼ ðrðtÞ; pðtÞÞ by solving Hamilton’s equations of motion,
that is,
_r ¼ rpH ¼ c
p
jpj ; ð8Þ

_p ¼ �rrH ¼ �jpjrc:
Note that in deriving the Eikonal equation (3) and transport equation (4) we omitted terms of order Oðx0Þ; neglecting the
coupling terms between Eqs. (3) and (4) leads to first order differential equations. The ODEs (8) are thus solved by using, for
example, initial conditions Xð0Þ ¼ ðr0; p0 ¼ r/0ðr0ÞÞ. A solution for the phase / is then obtained by integration, that is
/ðr; tÞ ¼ /0ðr0Þ þ
Z t

0
ðp _r � HÞds:
Here the integral is taken along XðtÞ ¼ utðX0Þ, the phase space flow map obtained from the pair of ODEs (8). In particular we
integrate over trajectories starting at t ¼ 0 at some point r0 with momentum p0 ¼ r/0ðr0Þ and reaching the final point r at
time t. Here /0 is the initial phase corresponding to the initial conditions u0ðr0Þ ¼ A0ðr0Þ expðix/0ðr0ÞÞ at t ¼ 0. In general,
there will be several such initial points from which a trajectory reaches the point r at time t. That is, the solution to the eik-
onal equation (3) at a point r has a multi-sheet structure with a set of N ¼ Nðr; tÞ branches, each giving rise to a phase
/jðr; tÞ ¼ /0ðrjÞ þ
Z t

0
ðpj _rj � HÞds; j ¼ 1; . . . ;N: ð9Þ
The integrals are taken over paths Xj; j ¼ 1; . . . ;N, reaching r in time t with Xjð0Þ ¼ ðrj;r/0ðrjÞÞ. It is this multi-sheet structure
which makes solving Eq. (3) difficult in practice [2]. In particular, the number of branches NðtÞ can increase rapidly with t and
for chaotic ray dynamics NðtÞ actually increases exponentially [1].

We would like to remark that choosing the ‘‘�’’ sign in (3) leads to a sign-change in (8) and gives time-reversed ray tra-
jectories obtained through the time transformation t ! �t. The complete solution to the Eikonal equation is thus given by
the set of characteristics travelling both in positive and negative time.

We turn now to the solution of the transport equation (5); this equation is driven by the solution /ðr; tÞ of the Eikonal
equation (3). It thus suffers in principle from the same multi-valuedness problem as the original equation. Note, however,
that the solutions of the ray equation (8) in phase space are determined uniquely for a given initial condition; it is the pro-
jection onto r - space which leads to the multi-valuedness of the phase solution. It is thus advantageous to solve the trans-
port equation in phase space. The corresponding equation is the Liouville equation
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@q̂
@t
þ H; q̂f g ¼ 0; ð10Þ
where f�; �g are the Poisson brackets, and Hðr; pÞ is the classical Hamilton function (7). The phase space density
q̂ðr; p; tÞ ¼
XNðtÞ
j¼1

~qjðr; tÞdðp�r/jðr; tÞÞ; ð11Þ
indeed solves Eq. (10) if the branches /jðr; tÞ and ~qjðr; tÞ obey the Eikonal and transport equations (3) and (5), respectively.
(This result can be obtained by inserting (11) into (10), see also [2].) A formal solution of the LE is obtained in terms of a
Frobenius–Perron operator
q̂ðX; tÞ ¼ Lt½q̂�ðXÞ ¼
Z

dðX �utðYÞÞq̂ðY;0ÞdY ¼ q̂ðu�tðXÞ;0Þ; ð12Þ
where the last relation is valid for Hamiltonian flows; this relation is used extensively in the ray tracing approach.
The solution of the wave equation (1) is now formally obtained by summing over the solution branches in (9), that is,
uðr; tÞ ¼
XN

j¼1

jAjðr; tÞjeix/jðr;tÞ�imj
p
2 ; ð13Þ
where mj are Maslov indices [1] due to caustics along the ray XjðtÞ. As we are not interested in phases in what follows, we will
not discuss the issue of Maslov indices any further here. An asymptotic treatment of the wave equation using the Eikonal
ansatz needs to keep track of the link between phases and amplitudes along the different solution branches. Ray tracing
methods are then used for finding solutions using the Eikonal ansatz. Ray tracing is an efficient method for short times
and in cases where only a few reflections occur. However, the rapid increase in the number of paths makes ray tracing meth-
ods quite cumbersome for large times. The advantages behind the original idea of the Eikonal ansatz, namely replacing a
wave equation with highly oscillatory solutions by differential equations for slowly varying quantities such as the amplitude
and phase, are then lost.

In many applications it is, however, sufficient to find the solution of the transport equations for a given set of initial con-
ditions. The density q̂ðX; tÞ contains a great deal of information about the wave solution, and this may often be sufficient for
the required purpose. Classical ray tracing, that is ray tracing without tracking phase information, is indeed used extensively
in room acoustics.

2.2. Stationary formulation

In what follows, we will consider wave problems with time-harmonic forcing at a frequency x. We can then separate out
the time dependence by setting
uðr; tÞ ¼ GðrÞeixt :
After introducing forced excitation, here by a point source, the corresponding inhomogeneous wave equation has the form
r � ðc2rÞ þx2� �
GðrÞ ¼ �c2dðr � r0Þ; ð14Þ
with the source point at r ¼ r0. The solution Gðr; r0Þ is the Green function and arbitrary force distributions can be recovered.
For an Eikonal approach, we proceed by splitting the solution into a homogeneous and an inhomogeneous (or direct) solu-

tion in the form
Gðr; r0Þ ¼ G0ðr; r0Þ þ Ghðr; r0Þ;
where G0 is the free Green function and Gh solves the homogeneous Helmholtz equation
r � ðc2rÞ þx2� �
GhðrÞ ¼ 0 ð15Þ
with appropriate boundary conditions. (For Dirichlet BC, that is GðsÞ ¼ 0, we obtain GhðsÞ ¼ �G0ðsÞ for s 2 C.) One finds for
two-dimensional problems and in the special case of cðrÞ ¼ const,
G0ðr; r0Þ ¼
i
4

H1
0ðxjr � r0j=cÞ; ð16Þ
where H1
0 is the 0th order Hankel function of the first kind. This approach is in principle still valid for inhomogenouos media

with spatially varying cðrÞ, although the free Green function will then not be available in closed form in general. Proceeding
with an Eikonal ansatz, we set Gh ¼ A expðixwÞ; we have then
/ðr; tÞ ¼ wðrÞ þ t and
@A
@t
¼ 0: ð17Þ
The Eikonal and transport equations (3) and (5) reduce to
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cjrwj ¼ 1 ð18Þ
and
r � v �qð Þ ¼ 0 with vðrÞ ¼ �c2rw: ð19Þ
Note that since rw ¼ p, then H ¼ cjpj ¼ 1 and hence we are also fixing the magnitude of the momentum here. We write the
boundary conditions in the form
G0ðsÞ ¼ A0ðsÞeixw0ðsÞ for s 2 C:
In order to obtain an approximate solution of (18) at a point r 2 X one needs to find those rays starting from a boundary
point s 2 C with initial conditions X0 ¼ ðs; p ¼ rw0ðsÞÞ which pass through the point r following the equations of motion
(8). The phase function w is then obtained by integrating along this trajectory with an initial condition wðsÞ ¼ w0ðsÞ; the phase
function w again has a multi-sheet structure and there are in general infinitely many sheets intersecting with the plane
r ¼ const in phase space. (A phase space description of the sheets can be given in terms of Lagrangian manifolds, see for
example [26].) The various branches are calculated according to
wjðrÞ ¼ w0ðsjÞ þ
Z r

sj

pdr;
integrating along a trajectory with initial condition Xj ¼ ðsj; pj ¼ rw0ðsjÞÞ. The transport equation (19) is solved with initial
conditions
j0ðsÞ ¼ �c2A2ðsÞ @w0ðsÞ
@n

; ð20Þ
where j0ðsÞ is the incoming flux normal to the boundary. The total solution is then approximately obtained as
GðrÞ ¼ G0ðrÞ þ
X
j¼1

jAjðrÞjeixwjðrÞ�iljp=2; ð21Þ
where lj are again Maslov phases and jAjj is the amplitude transported along the trajectory from Xj to r; for alternative der-
ivations of Eqs. (13) and (21), see [1].

In applications, one is often interested in wave intensities (such as energy densities); the contributions arising from
reflections at the boundary have the form
IðrÞ ¼ jGhðrÞj2 ¼
X

j;j0
jAjAj0 jeixðwj�wj0 Þ ¼

X
j

�qjðrÞ þ
X
j–j0
jAjAj0 jeixðwj�wj0 Þ; ð22Þ
where we left out the Maslov indices for simplicity. Neglecting the oscillatory terms, which is justified after averaging over a
small x range or over an ensemble of similar systems, one arrives at the ray tracing approximation
IðrÞ � qðrÞ ¼
X

j

�qjðrÞ ¼
Z

qðr;pÞdp; ð23Þ
where qðr; pÞ is a solution of the stationary Liouville equation [23] with
H;qf g ¼ 0 ð24Þ
and boundary conditions given by (20) together with Snell’s law of reflection. Note that jGðrÞj2 may be estimated for r 2 X by
simply adding jG0ðrÞj2 to qðrÞ.

It is clear from the description above that a ray tracing approach is even more cumbersome in the stationary case than in
the time-dependent case. The stationary solution is constructed from infinitely many branches which originate from reflec-
tions at boundaries. If we neglect phase information, however, we can reconstruct the phase space densities using the Frobe-
nius–Perron operator, Eq. (12) [23,24]. In the next section we will introduce an efficient algorithm for determining solutions
of the stationary Liouville equation in the presence of multiple reflections, thus overcoming the limitations of the ray tracing
approaches sketched above.

3. Boundary integral formulation of the Liouville equation

In the following, we will restrict ourselves to problems in two dimensions, that is, X � R2; for a generalisation to prob-
lems in three dimensions, see [27]. We will often consider subdividing the whole domain X into subdomains Xi; i ¼ 1; . . . ;N,
where N is the total number of subsystems, and we will furthermore assume that the wave velocity is constant in each sub-
domain, that is, ci ¼ const. The boundary C is understood to be the union of the boundaries of all subsystems. For the der-
ivations below we omit the index i and consider the single subsystem case to simplify notation, the multi-component case is
a straightforward extension. In order to solve the stationary Liouville Eq. (24), the ray tracing integral formula, Eq. (12), is
rewritten in a boundary integral form using a boundary mapping technique. The boundary mapping procedure involves first
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mapping the ray density emanating continuously from the source onto the part of the boundary C adjacent to the source and
then constructing a Frobenius–Perron operator for the boundary map.

We now give an explicit derivation of the initial density on the boundary arising from Eq. (14) for Dirichlet boundary con-
ditions. The ray density emanating from a source point r0 2 X is given by the square of the amplitude of the free space Green
function, Eq. (16), and we have the following high frequency asymptotic form
jG0ðr; r0Þj2 �
c

8pxjr � r0j
: ð25Þ
When lifting the ray density to the full phase space, Eq. (25) corresponds to rays moving out from the source uniformly in
all directions according to
q0ðr;p; r0Þ ¼
cdðp� p0Þ

8pxjr � r0j
; ð26Þ
where p0 ¼ jpjðr � r0Þ=jr � r0j. Note that from Eq. (18), the ray dynamics take place on the ‘energy’ manifold Hðr; pÞ ¼ cjpj ¼ 1.
We now use the general relation between phase space densities q on the full domain X and boundary densities qC, that is,
qðrs;pÞ ¼ qCðs; psÞdðcjpj � 1Þ: ð27Þ
Here, qðrs; pÞ is the ray density in the full phase space at the point rs on the boundary, and s parameterizes C, whereas ps is
the momentum component of p tangential to C at s. Using local coordinates on the boundary, that is, p ¼ ðps; p

?Þ, and writing
dðp� p0Þ ¼ dðps � ps0

Þdðp? � p?0 Þ, one obtains
jpjdðps � ps0
Þdðp? � p?0 Þ ¼ cp?dðps � ps0

Þdðcjpj � 1Þ:
Combining these identities with (26) and (27) for the initial density when q ¼ q0 and qC ¼ qC
0 yields
qC
0 ðs;ps; r0Þ ¼

c2 cosðhðrs; r0ÞÞdðps � ps0
Þ

8pxjrs � r0j
; ð28Þ
where hðrs; r0Þ is the angle between the normal to C at rs and the ray from r0 to rs. The resulting boundary layer density qC
0 is

equivalent to a source density on the boundary producing the same initial ray field in the interior as the original source field.
Note that the source density is only mapped on the part of C which can be reached directly from the source point r0.

The operator equivalent to the Frobenius–Perron operator (12), but now acting on boundary densities qC, is described in
terms of a boundary integral operator B,
BqCðXsÞ ¼
Z
@P

wðYs;xÞdðXs � cðYsÞÞqCðYsÞdYs
; ð29Þ
where Xs ¼ ðs; psÞ;Ys ¼ ðs0; p0sÞ are Birkhoff coordinates on the boundary and c is the invertible boundary map. It maps a point
Ys along the ray leaving C at s0 with momentum p0s onto the point of first reflection of the ray, Xs ¼ cðYsÞ. Also,
@P ¼ C	 ð�jpj; jpjÞ is the phase space on the boundary at fixed ‘‘energy’’ HðXÞ ¼ cjpj. The weight w contains factors due
to reflection/ transmission at interfaces between subdomains within X due to, for example, abrupt changes in material
parameters and thus the wave velocity c. The transition rates are obtained from reflection/transmission coefficients of the
infinite half-plane wave solution at these interfaces. In addition, w contains a damping term of the form expð�lLðs; s0ÞÞ,
where Lðs; s0Þ is the length of the trajectory between s and s0 and l is the damping coefficient. Note that, depending on
the modelling assumptions, the factors in w may depend on x. A similar weight term also needs to be applied in Eq. (28)
since rays emanating from the source will also be subject to dissipation and possible reflection/ transmission at interfaces.
We assume uniform damping in the interior, that is, l does not depend on r. The damping mechanism does then not alter the
underlying ray dynamics [28]. For simplicity, we assume convexity of each subdomain which ensures that c is well defined;
non-convex regions can be handled by introducing a cut-off function (or visibility function) marking the shadow zones as in
Ref. [21] or by subdividing the regions further.

The stationary density on the boundary induced by the initial boundary distribution qC
0 ðX

s;xÞ can then be obtained using
qCðxÞ ¼
X1
n¼0

BnðxÞqC
0 ðxÞ ¼ ðI � BðxÞÞ

�1qC
0 ðxÞ; ð30Þ
where Bn contains trajectories undergoing n reflections at the boundary.
The resulting density distribution on the boundary, qCðXs;xÞ, is then mapped back into the interior region. We first com-

pute the interior density produced by the boundary density qC using Eq. (27). The wave energy density is then related to the
projection of the phase space density onto physical space via Eq. (23), that is,
qðr; xÞ ¼
Z

qðr;p; xÞdp ¼
ZZ

qCðXsðr;pÞ;xÞdðcjpj � 1ÞjpjdjpjdH; ð31Þ
where Xsðr; pÞ is the boundary phase space point from which a ray reaches the interior point ðr; pÞ and ðjpj;HÞ is a polar coor-
dinate system for p. One finally obtains
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qðr;xÞ ¼ 1
c2

Z 2p

0
qCðXsðHÞ;xÞdH: ð32Þ
The angle H parameterises the boundary C, that is, we can write s ¼ sðHÞ with respect to the origin fixed at r; now perform-
ing a change of variables from H to s yields
qðr;xÞ ¼ 1
c2

Z
qCðXs;xÞ cosðhðrs; rÞÞ

jr � rsj
ds; ð33Þ
where rs 2 C is the point on C in Cartesian coordinates corresponding to s and h is the angle with the normal to C at s as in
(28). For systems with damping we must again apply a factor of the form expð�lLðs; s0ÞÞ to the final density evaluation (33).
Then jGðr; r0;xÞj2 may be estimated simply by adding jG0ðr; r0;xÞj2 to the value of qðr;xÞ given by (33).

We remark in passing that our approach follows the same underlying principle as the infinitesimal generator technique
presented in [17]. This method aims at estimating the long term behaviour of the dynamics by numerically calculating the
spectral properties of the generator of the Frobenius–Perron operator in the full phase space and extrapolating to long times.
Here, we propagate the dynamics along rays from one intersection with the boundary to the next; we thus use short, but not
infinitesimal trajectory segments restricted to the boundary phase space to build up the dynamics.

4. Numerical implementation: basis approximations and boundary element techniques

The long term dynamics is contained in the operator ðI � BÞ�1 and standard properties of Frobenius–Perron operators en-
sure that the sum over n in Eq. (30) converges for dissipative or open systems. In order to evaluate ðI � BÞ�1, a finite dimen-
sional approximation of the operator B must be constructed. In Refs. [23,24], basis expansions have been applied in both
position and momentum coordinates, which is straightforward to implement for X � R2 using univariate expansions in each
argument. In particular, in Ref. [23], a Fourier basis was employed globally on each subsystem in both position and momen-
tum. It is well known that the convergence rate of a Fourier basis expansion depends on the smoothness of the approximant
and also requires periodic boundary conditions [29]. The periodicity requirement will be fulfilled due to periodicity of the
boundary curve and that the ray density corresponding to ps ¼ �jpj is zero giving periodicity in the momentum coordinate.
However, the smoothness criterion often fails if, for example, corners are present in C; the initial density due to a point
source is not then differentiable at the corners.

In Ref. [24] it was suggested to split up the spatial approximation at corners in C and apply a basis approximation with no
requirement for periodic boundary conditions in order to attain its optimal convergence properties. An approximation using
a Chebyshev basis was implemented since Chebyshev polynomials may be computed simply in terms of trigonometric func-
tions and have similar convergence properties to Fourier basis approximations without the periodicity requirement. Such an
approach also has a natural and optimal (in terms of polynomial degrees that can be integrated exactly) quadrature choice
for the associated integrals, namely, Gauss–Chebyshev quadrature. The improvement in computational efficiency brought
about by this approach opened up the method to larger scale multi-component problems.

In this work we go further along this route by subdividing the boundary using a mesh. This introduces greater flexibility
into the numerical method making it possible to both increase the polynomial order of the basis functions and to refine the
mesh for the spatial coordinates. The advantage of refining the mesh is that additional degrees of freedom are introduced to
the model whilst maintaining relatively low quadrature costs due to the lower order of the spatial basis approximation. As
such it is preferable to choose a basis which is orthogonal in the standard L2 inner product. (From previous experience using
a Chebyshev basis, where the associated orthogonal inner product is weighted, we found that low order approximations
were very poor). Due to the mesh discretization procedure adopted here, the boundary conditions are not periodic and using
a Fourier basis is not advisable; hence an alternative L2�orthogonal basis choice is proposed, namely, Legendre polynomials.

The overall form of the proposed numerical scheme in 2D is therefore based on a Legendre polynomial approximation in
both position and momentum augmented with a boundary mesh through which the spatial approximation may be localised.
For an extension of the method to 3D cavities see [27]. Recall that ps 2 ð�jpj; jpjÞ and denote by ~ps a re-scaling of ps to ð�1;1Þ.
Let us also denote
ePmðpsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1=jpj

p
Pmð~psÞ;
An important special case of the scheme described above is when we fix the spatial basis approximation at zero (constant)
order and only refine the mesh, which essentially results in a scaled piecewise constant boundary element approximation.
This type of approximation is also often referred to as Ulam’s method [15,16], although this would involve performing such
an approximation in full phase space, rather than just in its spatial component. The implementation of separate meshes and
basis approximations in both position and momentum would, however, complicate the procedure. In addition, our final com-
putations will involve integration over spatial variables only. A spatial mesh therefore has the additional benefit of localising
the integration regions, permitting the use of lower order quadrature rules.

The overall approximation is then of the form



Fig. 1. Five cavity polygonal example geometry.
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qCðXs;xÞ �
Xn

a¼1

XNs

l¼0

XNp

m¼0

qa;l;m
bPa;lðsÞePmðpsÞ; ð34Þ
where Ns and Np are the orders of the position and momentum basis expansions, respectively, and n is the number of ele-
ments in the mesh. Also
bPa;lðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2=Aa

p
Plð~saÞvaðsÞ;
where ~sa parameterizes the ath element and is scaled to take values in ð�1;1Þ;va is the characteristic function for element a
and Aa is the length of element a;a ¼ 1; . . . ;n. The initial density on the boundary qC

0 is projected onto the finite dimensional
space associated with the basis approximation (34) and the values of qa;l;m are to be determined by solving the resulting lin-
ear system. Note that the special case of piecewise constant boundary elements is reached by setting Ns ¼ 0 above. The other
limiting case, Np ¼ 0, corresponds to a ‘diffusive’ reflection approximation, also denoted as Lambert’s law [5], which is equiv-
alent to the assumption that incoming rays are scattered uniformly in all directions after reflecting from a boundary. Eq. (30)
then becomes equivalent to the integral equations discussed in [21,30]. Note that the case Np ¼ Ns ¼ 0 and n ¼ 1 corresponds
to an SEA approximation for a single subsystem (n equals the number of substructures for multi-component systems ) [23].

The matrix approximation B of the linear operator B (29) is given by taking the inner product h�; �i in L2ð@PÞ:
Bmþ1þNpðlþNsða�1ÞÞ;bþ1þNpðaþNsðb�1ÞÞ ¼
ð2mþ 1Þð2lþ 1Þ

4
B bPb;aðs0ÞePbðp0sÞ
� �

; bPa;lðsÞePmðpsÞ
D E

¼ ð2mþ 1Þð2lþ 1Þ
4

Z
@P

Z
@P

wðYs;xÞdðXs � cðYsÞÞbPb;aðs0ÞePbðp0sÞbPa;lðsÞePmðpsÞdYsdXs

¼ ð2mþ 1Þð2lþ 1Þ
4

Z
@P

wðYs;xÞbPb;aðs0ÞePbðp0sÞbPa;lðcsðY
sÞÞePmðcpðY

sÞÞdYs
: ð35Þ
Here we write c ¼ ðcs; cpÞ, to denote the splitting of the position and momentum parts of the boundary map. The boundary
map can be very difficult to obtain in general, and hence we write the operator in terms of trajectories with fixed start and
end points s0 and s as follows
Bmþ1þNpðlþNsða�1ÞÞ;bþ1þNpðaþNsðb�1ÞÞ ¼
ð2mþ 1Þð2lþ 1Þ

4

Z
C

Z
C

wðYs;xÞePmðpsðs; s0ÞÞbPa;lðsÞePbðp0sðs; s0ÞÞbPb;aðs0Þ
@p0s
@s

���� ����ds0ds: ð36Þ
The resulting boundary integral formulation containing a pair of integrals over boundary coordinates bears a resemblance to
standard variational Galerkin boundary integral formulations, see for example [31].
5. Numerical results

In this section we consider a two-dimensional polygonal example whose boundary is meshed by subdividing each side
into equidistant sections governed by a mesh parameter Dx. The number of elements on any given side is computed using
the integer part of the side length divided by Dx. The Jacobian in Eq. (36) is written in the form
@p0s
@s

���� ���� ¼ jpjðn � ðrs � r0sÞÞðn0 � ðrs � r0sÞÞ
jrs � r0sj

3 ; ð37Þ
where n and n0 are the inward unit normal vectors to C at rs and r0s, respectively. In addition rs and r0s are the Cartesian coor-
dinate vectors corresponding to the boundary parameterised coordinates s and s0. In order to treat the corner singularities in
(37), Gaussian quadrature is employed where end-points are not included as quadrature points. The convergence of the
quadrature rules is still slow due to the peak in the integrand at corners. Telles’ transformation techniques are employed
to speed up the convergence [32].
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A five cavity system is considered as shown in Fig. 1 with Dirichlet boundary conditions on the outer boundary. The appli-
cation of the method to multiple subdomains is carried out using the same techniques as detailed in [24]. In general the con-
figuration features irregular shaped, well separated pentagonal subsystems. In such a case one expects the wave energy to be
fairly evenly distributed within subsystems and the energy levels in each subsystem to be distinct and well separated. The
one feature of the configuration where such trends may not hold is due to the direct channel running to the right of the
source point leading to a corridor type effect and energy being localised along this channel. Such dynamical features are
likely to require higher order applications of our numerical algorithm to adequately resolve the behaviour.

Energy distributions have been studied as a function of the frequency with a hysteretic damping factor g ¼ 0:01, where
l ¼ xg=ð2cÞ throughout X. Here and in the remainder of this section the subsystems (or cavities) are numbered 1;2; . . . ;5
from left to right. The wave speed is set to unity for simplicity. Note that the method allows c (and thus l) to vary between
subsystems [24], but we do not make use of this in the examples considered here. Therefore the subsystem interface reflec-
tion and transmission coefficients appearing in the weight term in (29) are simply 0 and 1, respectively.

Fig. 2 shows the energy distribution throughout the five subsystems compared with the results of a boundary element
computation for the full wave problem. Explicitly we compute the square of the energy norm
Fig. 2.
cyan (th
kGik2 :¼
Z

Xi

jGðr; r0;xÞj2dr; i ¼ 1;2; . . . ;5: ð38Þ
The lines show the approximate energy norms given by the Liouville equation model computed for
f ¼ ðx=ð2pÞÞ ¼ 10;13;16;19; . . . ;70 with Np ¼ 10; Ns ¼ 0 and n ¼ 627, and hence the spatial approximation has been im-
proved via mesh refinement rather than using higher order Legendre polynomial basis expansions. This has the benefit that
the quadrature costs are kept moderate and leads to considerable efficiency gains. The computations here took approxi-
mately 2:5 hours per frequency compared with typical times of approximately 53 hours for a full tenth order Chebyshev ba-
sis computation using the methods reported in [24]. Here the computations were performed using a single core of a desktop
PC with a 2.83 Ghz dual core processor. The circles each show the mean of 22 boundary element method computations,
where the average is taken over a small range of frequencies centered around 10;20; . . . ;70. The plus signs show the maxima
and minima of the boundary element computations. The plot shows a good agreement between the solution of the Liouville
equation and the mean of the full wave problem computations. In addition, the Liouville solution always lies within the
range of the data for the full wave problem.
Energy distribution in five coupled acoustic cavities. Subsystem: 1 – blue (dash-dot), 2 – red (dashed), 3 – green (thin solid), 4 – black (dotted), 5 –
ick solid). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3 shows the convergence of our numerical algorithm in subsystem 5 as the precision of the approximation is in-
creased by refining the mesh and simultaneously increasing the order of the Legendre basis approximation in direction
space. The plot shows the relative error in the energy norm kG5k2 compared against the value kGe

5k
2 computed with

Np ¼ 10; Ns ¼ 0 and n ¼ 627. The relative error plotted is thus given by ðkGe
5k

2 � kG5k2Þ=kGe
5k

2. The trend of the energy
increasing as the precision of the numerical method is increased is shown by the error values all being positive and is ex-
pected since a low order implementation of our numerical scheme will not capture the direct energy channelled to the right
of the source and into subsystem 5. Higher order basis functions in direction space are required to capture such directivity
patterns in the wave field. In addition the plot shows the approximated solutions converging since the errors are getting clo-
ser to zero as higher order approximations are employed. For the case Np ¼ 2, n ¼ 70 one sees the error increasing as the
frequency and thus damping are increased. For high damping, the direct channel of energy (before reflection) from the
source point will form a more significant part of the overall solution. For the case Np ¼ 4, n ¼ 70, the higher order basis
in direction space has been able to model the channelling effect more accurately and the error has become almost uniform
across the frequency range.

Fig. 4 shows the energy density jGðr; r0;xÞj2 plotted for r 2 X and f ¼ 15. The upper subplot shows the energy density
approximated using a boundary element method for the full wave problem. The central subplot shows the average of 22 full
wave solutions at different frequencies 13 < f < 17. One sees that the averaging reduces the influence of small scale fluctu-
ations in the solution and produces a generally smoother looking plot, showing more clearly the influence of the source
point. The lower subplot shows the energy density approximated using the Liouville equation model with Np ¼ 10, Ns ¼ 0
and n ¼ 627. Many similarities with the central subplot are apparent. For example, the direct energy channel to the right
of the source and into subsystem 5, the location of the source and the dip in energy in the second subsystem close to the
interface are features present in both plots. Also the energy channelled along the upper boundaries of subsystems 1 and
4 is a common feature. This demonstrates that high frequency wave models based on the Liouville equation are indeed a
powerful tool to obtain averaged solutions. Such a solution can be obtained through averaging over an ensemble of similar
structures or over a small frequency range. Applications are abundant in high frequency vibro-acoustics, where small
changes in the domain due to, for example, manufacturing tolerances lead to large variations in the response and thus a sim-
ulation of any one particular problem will only be of statistical significance. Indeed, replacing highly oscillatory wave prob-
lems with smooth ray dynamical problems is often a very effective way of finding approximate solutions in the high
frequency regime.
Fig. 3. Evidence of convergence in subsystem 5.



Fig. 4. Energy density compared against the full wave solution: upper subplot shows the full wave solution, central subplot shows the full wave solution
averaged over a small frequency band, lower subplot shows the Liouville equation model.
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6. Conclusion

The suitability of the Liouville equation as a model for high frequency wave problems has been discussed. A boundary
integral approach has been proposed for its solution using the Frobenius–Perron operator. A numerical solution method
has been implemented based on Legendre polynomial approximations in phase space together with a spatial boundary
mesh. The proposed method has been verified by comparison with a BEM code for the full wave problem and numerical evi-
dence of convergence has been shown.
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